Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation.

نویسندگان

  • Satoshi Nakagawa
  • Ken Takai
  • Fumio Inagaki
  • Hitoshi Chiba
  • Jun-ichiro Ishibashi
  • Satoshi Kataoka
  • Hisako Hirayama
  • Takuro Nunoura
  • Koki Horikoshi
  • Yoshihiko Sako
چکیده

Phase-separation and -segregation (boiling/distillation of subseafloor hydrothermal fluids) represent the primary mechanisms causing intra-field variations in vent fluid compositions. To determine whether this geochemical process affects the formation of microbial communities, we examined the microbial communities at three different vent sites located within a few tens meters of one another. In addition to chimney structures, colonization devices capturing subseafloor communities entrained by the vent fluids were studied, using culture-dependent and -independent methods. Microbiological analyses demonstrated the occurrence of distinctive microbial communities in each of the hydrothermal niches. Within a chimney structure, there was a transition from a mixed community of mesophiles and thermophiles in the exterior parts to thermophiles in the interior. Beside the transition within a chimney structure, intra-field variations in microbial communities in vent fluids were apparent. Geochemical analysis demonstrated that different vent fluids have distinctive end-member compositions as a consequence of subseafloor phase-separation and -segregation, which were designated gas-depleted, normal and gas-enriched fluids. In comparison to gas-depleted and normal fluids, gas-enriched fluids harbored more abundant chemolithoautotrophs with gaseous component-dependent energy metabolism, such as hydrogenotrophic methanogenesis. Subseafloor phase-separation and -segregation may play a key role in supplying energy and carbon sources to vent-associated chemolithoautotrophs and subvent microbial communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subseafloor microbial communities in hydrogen‐rich vent fluids from hydrothermal systems along the Mid‐Cayman Rise

Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition...

متن کامل

Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems

In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isot...

متن کامل

Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise.

Little is known about the fluids or the microbial communities present within potentially vast hydrothermal reservoirs contained in still-hot volcanic ocean crust beneath the flanks of the mid-ocean ridge. During Alvin dives in 2002, organic material attached to basalt was collected at low, near-ambient temperatures from an abyssal hill fault scarp in 0.5 Ma lithosphere on the western ridge flan...

متن کامل

Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem.

Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and car...

متن کامل

Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge.

The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we repo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 2005